Stereotactic Body Radiation Therapy (SBRT) – One Dosimetrist’s Experience
SBRT Definition

What is SBRT?

- **S**tereotactic
- **B**ody
- **R**adiation
- **T**herapy
Stereotactic

• Stereotaxy = the superposition of a 3D co-ordinate system upon a given organ or structure.
• Requires an external frame, fixed to the body and treatment apparatus.
• The cranium is really the only site this is practical for.
Body

- This seems like an odd descriptor of radiation therapy… isn’t it all given to the body?
- Body = Extracranial
Radiation Therapy

• Hopefully, we all have some idea what this is… or do we…?
Standard Radiation Therapy

• Developed over the last 70 years
• Fractionated
• Daily Dose 1.8 – 2.0 Gy
• 2 – 4 Fields
Standard Radiation Therapy

• Functions by disrupting cellular division
• Cellular division is a complex process
• Disruption of any part of this process can lead to loss of reproductive integrity
• “Multiple high-value targets”
SBRT Definition

Standard Radiation Therapy

Fig. 1. a Typical cell survival curve shape comparing single-dose and multiple-dose radiation exposure. b Cell survival differs between normal tissues and tumor tissues for multiple-fraction exposure.

Meyer, et al. 2007
Standard Radiation Therapy

• Why fractionate?
 • Normal Tissue
 • Increasing dose / fraction using traditional techniques usually leads to increased toxicity
 • Traditional techniques included too much normal tissue
SBRT

- Delivery of high dose in few fractions
- SBRS (Stereotactic Body Radio Surgery) = 1 fraction
- SBRT = 2 – 5 fractions
SBRT

- Functions by destroying target cellular function
- Any individual cellular function is typically simpler than cellular reproduction... but all of functionality must be destroyed
- “Cumulative loss of low-value targets”
SBRT

• We need to be able to deliver high dose / fraction without toxicity

• Changes to
 • Simulation
 • Treatment Planning
 • Treatment Delivery
SBRT Simulation

- Immobilization
 - Body frames / bags – indexable
- High resolution CT (0.25cm or less)
- Respiratory Motion
 - Compression plates / wraps
 - Respiratory Gating – prospective or retrospective
SBRT Treatment Delivery

• High accuracy daily target localization
• IGRT
 • CBCT
 • kV / MV imaging
 • Ultrasound
SBRT Treatment Planning

• High accuracy target definition
 • Internal Target Volume (ITV) construction considering the role of respiratory motion

• Highly conformal dose volumes
 • Multiple beams (7 – 11), IMRT, VMAT

• Sharp dose gradients
 • Small field sizes, dose prescription to low isodoses, acceptance of dose inhomogeneity inside target
RPCI SBRT Experience

• Started our SBRT Lung program in 2007
• We also treat:
 • Liver
 • Adrenal / Kidney
 • Spinal Metastases
 • Head and Neck
• As of Sept 1 2016 – 536 cases
Lung SBRT Experience

- Lung SBRT (approx. 90% of cases)
- Follow RTOG protocols
 - 0236
 - 0813
 - 0915
- Developed internal protocols and clinical trials based upon the RTOG studies
• **Target Definition**
 • ITV is constructed based upon evaluation of the respiratory motion
 • Binned into 10% increments of respiratory cycle
 • Segments with too much motion are not used for ITV generation and will not be treated
 • PTV = ITV + 0.5cm
Lung SBRT Guidelines

• Dose Constraints – Target
 • High conformality, sharp dose gradients
 • Dose is typically prescribed to the highest isodose value that:
 • Covers 95% of PTV
 • Is between 60% and 90% of prescription dose
 • Why 60 – 90%?
 • Field conform to target with virtually no margin - 95% cannot cover volume
 • Field sizes must be kept as small as possible to spare normal tissue
Lung SBRT Guidelines

• Dose Constraints – Target
 • High Dose Conformality
 • 95% of PTV covered by 100% of prescription dose
 • 99% of PTV covered by 90% of prescription dose
 • High Dose Spillage
 • 100% Conformality Index
 • Ratio of prescription dose volume / PTV volume less than 1.2
 • Volume of tissue outside the PTV exceeding 105% must be less than 15% of PTV volume
Lung SBRT Guidelines

- **Dose Constraints – Target**
 - **Low Dose Spillage**
 - **50% Conformality Index**
 - Ratio of 50% prescription dose volume / PTV volume
 - Value varies based upon PTV volume
 - Lower acceptable limit as PTV volume increases
 - Range 2.9 – 3.9
 - **Maximum Dose 2cm from PTV**
 - Value varies based upon PTV volume
 - Higher acceptable limit as PTV volume increases
 - Range 46.8 – 73.8 % rx dose
Lung SBRT Guidelines

- Dose Constraints – Organs at Risk
 - Standard dose constraints don’t work due to:
 - High dose / fraction
 - Different mechanisms of cell damage
 - Data from earlier protocols that resulted in “good” plans was used to determine dose limits, which are then modified according to total prescription dose
• Dose Constraints – Organs at Risk

<table>
<thead>
<tr>
<th>Constraints</th>
<th>RTOG 0236 60 Gy / 3 Fx</th>
<th>RTOG 0813 50 – 60 Gy / 5 Fx</th>
<th>RTOG 0915 34 – 48 Gy / 1 – 4 Fx</th>
<th>RPCI I-124407 30 – 60 Gy / 1 – 3 Fx</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lung V20</td>
<td>10 %</td>
<td>10 %</td>
<td>10 %</td>
<td>10 %</td>
</tr>
<tr>
<td>Lung V12.5</td>
<td></td>
<td>1500 cc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lung V13.5</td>
<td></td>
<td>1000 cc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lung V7</td>
<td></td>
<td></td>
<td>1500 cc</td>
<td>1500 cc</td>
</tr>
<tr>
<td>Lung V7.4</td>
<td></td>
<td></td>
<td>1000 cc</td>
<td>1000 cc</td>
</tr>
<tr>
<td>Spinal Cord Max</td>
<td>18 Gy</td>
<td>30 Gy</td>
<td>14 / 26 Gy</td>
<td>14 / 18 Gy</td>
</tr>
<tr>
<td>Spinal Cord V13.5</td>
<td></td>
<td></td>
<td></td>
<td>0.5 cc</td>
</tr>
<tr>
<td>Spinal Cord V7</td>
<td></td>
<td></td>
<td>1.2 cc</td>
<td>1.2 cc</td>
</tr>
</tbody>
</table>
Lung SBRT vs 3DCRT

Planning Techniques

<table>
<thead>
<tr>
<th></th>
<th>Standard 3DCRT</th>
<th>SBRT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prescription</td>
<td>60 – 66 Gy</td>
<td>30 – 60 Gy</td>
</tr>
<tr>
<td>Dose / Fx</td>
<td>1.8 – 2.0 Gy</td>
<td>10 – 30 Gy</td>
</tr>
<tr>
<td>GTV / ITV Determined by</td>
<td>Free Breathing / Breath Hold CT</td>
<td>Respiratory Phase Analysis</td>
</tr>
<tr>
<td>PTV</td>
<td>GTV + 1.0 – 1.5cm</td>
<td>ITV + 0.5cm</td>
</tr>
<tr>
<td>Technique</td>
<td>2 – 4 Fields</td>
<td>7-11 Fields</td>
</tr>
<tr>
<td>Block Margin</td>
<td>0.8 – 1.2cm</td>
<td>0.0 – 0.2cm</td>
</tr>
</tbody>
</table>
Lung SBRT vs 3DCRT

- Targets
Lung SBRT vs 3DCRT

- 95% Isodose Coverage
Lung SBRT vs 3DCRT

- 50% Isodose Coverage
• Low Dose Coverage (7 Gy)
My SBRT Experience

• Started planning Lung SBRT in 2009
• Started planning much more frequently in 2011

• Presentation Data
 • 70 cases
 • 2011 – 2016
 • 3D and VMAT
 • Heterogeneity On and Off
My SBRT Experience

• Data Analysis
 • Parameters vs Time – did I get any better?
 • Parameters vs Technique – is VMAT better?
 • Parameters vs Calculation – is Heterogeneity better?
 • Parameter vs Patient Characteristics – is there a relationship between:
 – PTV volume and dose coverage
 – Total lung volume and lung parameters
My SBRT Experience

• Did I get any better?
• Did I get any better?
• Did I get any better?
My SBRT Experience

• Did I get any better?
• **Is VMAT better than 3D?**

<table>
<thead>
<tr>
<th></th>
<th>3D (n = 57)</th>
<th>VMAT (n = 13)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conformality Index / Limit</td>
<td>0.90</td>
<td>0.83 **</td>
</tr>
<tr>
<td>Max Dose PTV +2cm / Limit</td>
<td>0.97</td>
<td>0.94</td>
</tr>
<tr>
<td>V50% Rx Dose / Limit</td>
<td>0.91</td>
<td>0.99</td>
</tr>
<tr>
<td>Lung V7 / Limit</td>
<td>0.27</td>
<td>0.46 **</td>
</tr>
<tr>
<td>Lung V20 / Limit</td>
<td>0.30</td>
<td>0.40 **</td>
</tr>
<tr>
<td>Time on Treatment Couch</td>
<td>35.5</td>
<td>15</td>
</tr>
</tbody>
</table>
• Is Heterogeneity correction better?
 • We plan patients with or without heterogeneity corrections based upon the protocol we are following and/or the treatment technique

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Heterogeneity Correction</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTOG 0236</td>
<td>N</td>
</tr>
<tr>
<td>RTOG 0813</td>
<td>Y</td>
</tr>
<tr>
<td>RTOG 0915</td>
<td>Y</td>
</tr>
<tr>
<td>RPCI I-124407</td>
<td>N</td>
</tr>
<tr>
<td>All VMAT cases</td>
<td>Y</td>
</tr>
</tbody>
</table>
My SBRT Experience

- Is Heterogeneity correction better?
 - We plan patients with or without heterogeneity corrections based upon the protocol we are following and/or the treatment technique

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Heterogeneity Correction</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTOG 0236</td>
<td>N</td>
</tr>
<tr>
<td>RTOG 0813</td>
<td>Y</td>
</tr>
<tr>
<td>RTOG 0915</td>
<td>Y</td>
</tr>
<tr>
<td>RPCI I-124407</td>
<td>N</td>
</tr>
<tr>
<td>All VMAT cases</td>
<td>Y</td>
</tr>
</tbody>
</table>
My SBRT Experience

• Is there a relationship between PTV volume and dose parameters?
• Is there a relationship between PTV volume and dose parameters?
• Is there a relationship between PTV volume and dose parameters?
• Is there a relationship between PTV volume and dose parameters?
• Is there a relationship between total lung volume and dose parameters?
• Is there a relationship between total lung volume and dose parameters?
Does SBRT Work?

- 5 months post treatment
Does SBRT Work?

- 17 months post treatment
Does SBRT Work?

- 31 months post treatment
Conclusions?

- SBRT planning is not for the faint of heart
- Plan quality seems to be largely a factor of the protocol constraints
- There “appears” to be a relationship between PTV volume and some plan parameters
 - It appears to be more difficult to achieve the V50%, Lung V20 and Lung V7 parameter as PTV volume increases
• Read the protocols – but sometimes they have English bad
• Make sure you’re using the right prescription dose / OAR parameters for the clinical situation
• Do a site visit
• Don’t get too freaked out about SBRT planning
• But don’t take it lightly
Thanks

- Rachel Hackett
- Andrew Goraj
- Jeremy Garvin
- Richard Russo
- Anurag Singh
- Jorge Gomez
Thanks

• Callum Hales