

Stereotactic Body Radiation Therapy (SBRT) – One Dosimetrist's Experience

ROSW

What is SBRT?

- Stereotactic
- Body
- Radiation
- Therapy

Stereotactic

- Stereotaxy = the superposition of a 3D co-ordinate system upon a given organ or structure.
- Requires an external frame, fixed to the body and treatment apparatus.
- The cranium is really the only site this is practical for.

Body

- This seems like an odd descriptor of radiation therapy... isn't it all given to the body?
- Body = Extracranial

Radiation Therapy

• Hopefully, we all have some idea what this is... or do we...?

Standard Radiation Therapy

- Developed over the last 70 years
- Fractionated
- Daily Dose 1.8 2.0 Gy
- 2-4 Fields

Standard Radiation Therapy

- Functions by disrupting cellular division
- Cellular division is a complex process
- Disruption of any part of this process can lead to loss of reproductive integrity
- "Multiple high-value targets"

Standard Radiation Therapy

Fig. 1. a Typical cell survival curve shape comparing single-dose and multiple-dose radiation exposure. **b** Cell survival differs between normal tissues and tumor tissues for multiple-fraction exposure.

Meyer, et al. 2007

Standard Radiation Therapy

- Why fractionate?
 - Normal Tissue
 - Increasing dose / fraction using traditional techniques usually leads to increased toxicity
 - Traditional techniques included too much normal tissue

SBRT

- Delivery of high dose in few fractions
- SBRS (Stereotactic Body Radio Surgery) = 1 fraction
- SBRT = 2 5 fractions

SBRT

- Functions by destroying target cellular function
- Any individual cellular function is typically simpler than cellular reproduction... but all of functionality must be destroyed
- "Cumulative loss of low-value targets"

SBRT

- We need to be able to deliver high dose / fraction without toxicity
- Changes to
 - Simulation
 - Treatment Planning
 - Treatment Delivery

SBRT Simulation

SBRT Simulation

- Immobilization
 - Body frames / bags indexable
- High resolution CT (0.25cm or less)
- Respiratory Motion
 - Compression plates / wraps
 - Respiratory Gating prospective or retrospective

SBRT Delivery

SBRT Treatment Delivery

- High accuracy daily target localization
- IGRT
 - CBCT
 - kV / MV imaging
 - Ultrasound

SBRT Treatment Planning

SBRT Treatment Planning

- High accuracy target definition
 - Internal Target Volume (ITV) construction considering the role of respiratory motion
- Highly conformal dose volumes
 - Multiple beams (7 11), IMRT, VMAT
- Sharp dose gradients
 - Small field sizes, dose prescription to low isodoses, acceptance of dose inhomogeneity inside target

RPCI SBRT Experience

- Started our SBRT Lung program in 2007
- We also treat:
 - Liver
 - Adrenal / Kidney
 - Spinal Metastases
 - Head and Neck
- As of Sept 1 2016 536 cases

Lung SBRT Experience

- Lung SBRT (approx. 90% of cases)
- Follow RTOG protocols
 - 0236
 - 0813
 - 0915
- Developed internal protocols and clinical trials based upon the RTOG studies

- Target Definition
 - ITV is constructed based upon evaluation of the respiratory motion
 - Binned into 10% increments of respiratory cycle
 - Segments with too much motion are not used for ITV generation and will not be treated
 - PTV = ITV + 0.5cm

- Dose Constraints Target
 - High conformality, sharp dose gradients
 - Dose is typically prescribed to the highest isodose value that:
 - Covers 95% of PTV
 - Is between 60% and 90% of prescription dose
 - Why 60 90%?
 - Field conform to target with virtually no margin
 95% cannot cover volume
 - Field sizes must be kept as small as possible to spare normal tissue

- Dose Constraints Target
 - High Dose Conformality
 - 95% of PTV covered by 100% of prescription dose
 - 99% of PTV covered by 90% of prescription dose
 - High Dose Spillage
 - 100% Conformality Index
 - Ratio of prescription dose volume / PTV volume less than 1.2
 - Volume of tissue outside the PTV exceeding 105% must be less than 15% of PTV volume

- Dose Constraints Target
 - Low Dose Spillage
 - 50% Conformality Index
 - Ratio of 50% prescription dose volume / PTV volume
 - Value varies based upon PTV volume
 - Lower acceptable limit as PTV volume increases
 - Range 2.9 3.9
 - Maximum Dose 2cm from PTV
 - Value varies based upon PTV volume
 - Higher acceptable limit as PTV volume increases
 - Range 46.8 73.8 % rx dose

- Dose Constraints Organs at Risk
 - Standard dose constraints don't work due to:
 - High dose / fraction
 - Different mechanisms of cell damage
 - Data from earlier protocols that resulted in "good" plans was used to determine dose limits, which are then modified according to total prescription dose

• Dose Constraints – Organs at Risk

Constraints	RTOG 0236 60 Gy / 3 Fx	RTOG 0813 50 – 60 Gy / 5 Fx	RTOG 0915 34 – 48 Gy / 1 – 4 Fx	RPCI I-124407 30 – 60 Gy / 1 – 3 Fx
Lung V20	10 %	10 %	10 %	10 %
Lung V12.5		1500 cc		
Lung V13.5		1000 cc		
Lung V7			1500 cc	1500 cc
Lung V7.4			1000 cc	1000 cc
Spinal Cord Max	18 Gy	30 Gy	14 / 26 Gy	14 / 18 Gy
Spinal Cord V13.5		0.5 cc		
Spinal Cord V7			1.2 cc	1.2 cc

• Planning Techniques

	Standard 3DCRT	SBRT
Prescription	60 – 66 Gy	30 – 60 Gy
Dose / Fx	1.8 – 2.0 Gy	10 – 30 Gy
GTV / ITV Determined by	Free Breathing / Breath Hold CT	Respiratory Phase Analysis
PTV	GTV + 1.0 – 1.5cm	ITV + 0.5cm
Technique	2 – 4 Fields	7-11 Fields
Block Margin	0.8 – 1.2cm	0.0-0.2cm

• Targets

• 95% Isodose Coverage

• 50% Isodose Coverage

• Low Dose Coverage (7 Gy)

My SBRT Experience

- Started planning Lung SBRT in 2009
- Started planning much more frequently in 2011
- Presentation Data
 - 70 cases
 - 2011 2016
 - 3D and VMAT
 - Heterogeneity On and Off

My SBRT Experience

- Data Analysis
 - Parameters vs Time did I get any better?
 - Parameters vs Technique is VMAT better?
 - Parameters vs Calculation is Heterogeneity better?
 - Parameter vs Patient Characteristics is there a relationship between:
 - PTV volume and dose coverage
 - Total lung volume and lung parameters

• Did I get any better?

• Did I get any better?

• Did I get any better?

V50% / Limit

• Did I get any better?

My SBRT Experience

• Is VMAT better than 3D?

	3D (n = 57)	VMAT (n = 13)
Conformality Index / Limit	0.90	0.83 **
Max Dose PTV +2cm / Limit	0.97	0.94
V50% Rx Dose / Limit	0.91	0.99
Lung V7 / Limit	0.27	0.46 **
Lung V20 / Limit	0.30	0.40 **
Time on Treatment Couch	35.5	15

My SBRT Experience

- Is Heterogeneity correction better?
 - We plan patients with or without heterogeneity corrections based upon the protocol we are following and/or the treatment technique

Protocol	Heterogeneity Correction
RTOG 0236	Ν
RTOG 0813	Y
RTOG 0915	Y
RPCI I-124407	Ν
All VMAT cases	Y

My SBRT Experience

- Is Heterogeneity correction better?
 - We plan patients with or without heterogeneity corrections based upon the protocol we are following and/or the treatment technique

Protocol	Heterogeneity Correction
RTOG 0236	Ν
RTOG 0813	Y
RTOG 0915	Y
RPCI I-124407	Ν
All VMAT cases	Y

PTV Volume vs. Achieved Conformality / Limit

PTV Volume vs. V50% / V50% Limit

PTV Volume vs. V20 / V20 Limit

PTV Volume vs. V7 / V7 Limit

• Is there a relationship between total lung volume and dose parameters?

Lung Volume vs. V20 / V20 Limit

Lung Volume vs. V7 / V7 Limit

Does SBRT Work?

• 5 months post treatment

Does SBRT Work?

• 17 months post treatment

Does SBRT Work?

• 31 months post treatment

Conclusions?

- SBRT planning is not for the faint of heart
- Plan quality seems to be largely a factor of the protocol constraints
- There *"appears"* to be a relationship between PTV volume and some plan parameters
 - It appears to be more difficult to achieve the V50%, Lung V20 and Lung V7 parameter as PTV volume increases

- Read the protocols but sometimes they have English bad
- Make sure you're using the right prescription dose / OAR parameters for the clinical situation
- Do a site visit
- Don't get too freaked out about SBRT planning
- But don't take it lightly

Thanks

- Rachel Hackett
- Andrew Goraj
- Jeremy Garvin
- Richard Russo
- Anurag Singh
- Jorge Gomez

• Callum Hales

