

REFUL PARTNERSHIPS ADVANCING IMAGING AND THERAPY

Vaginal Sparing with Volumetric Modulated Arc Therapy (VMAT) for Rectal Cancer

Scott Boulet BSc, RT(T)

Outline

- Background
- Objectives
- Design
- Results
- Discussion
- Conclusion
- Acknowledgements
- Questions

Background

- RT for Rectal Cancer
- Anatomical considerations and challenges
- Vaginal side effects following RT
- Sexual Dysfunction: treatment and management
- Vaginal sparing: What is being done?
- Previous studies

Rectum Anatomy

Lu, J., & Brady, Luther W. (2010). *Decision Making in Radiation Oncology* (Medical Radiology Radiation Oncology). Dordrecht: Springer.

Rectal Cancer

Stage	Description
Primary to	umor (T) ^a
тх	Primary tumor cannot be assessed
то	No evidence of primary tumor
Tis	Carcinoma in situ, intraepithelial or invasion of the lamina propria
T1	Tumor invades submucosa
T2	Tumor invades muscularis propria
ТЗ	Tumor invades through the muscularis propria into perirectal tissue
T4a	Tumor penetrates to the surface of the visceral peritoneum
T4b	Tumor directly invades or is adherent to other organs or structures
Regional	lymph nodes (N) ^b
NX	Regional lymph nodes cannot be assessed
NO	No regional lymph node metastasis
N1a	Metastasis in 1 node
N1b	Metastasis in 2–3 regional nodes
N1c	Tumor deposits in the subserosa, mesentery, or nonperitonealized perirectal tissues without regional nodal metastasis
N2a	Metastasis in 4-6 regional nodes
N2b	Metastasis in 7 or more regional nodes
Distant m	etastasis (M)
мх	Distant metastasis cannot be assessed
MO	No distant metastasis
M1a	Metastasis confined to one organ site (liver, lung, ovary, nonregion al lymph node)
M16	Metastases in more than one organ/site or the peritoneum

Lu, J., & Brady, Luther W. (2010). *Decision Making in Radiation Oncology* (Medical Radiology Radiation Oncology). Dordrecht: Springer.

Rectal Cancer

► 3D Conformal RT

Fields	Borders
	Superior: between L5 and S1
AP/PA or PA	Inferior (in pre-op. setting): 3–5 cm below the palpable disease
AF/FA OF FA	Inferior (in post-op. setting): include perineum after APR or 2–3 cm beyond the anastomosis after LAR
	Lateral: 1.5–2 cm lateral to the pelvic brim
	Superior/Inferior: as AP/PA fields
	Anterior (T3 disease): 2- to 3-cm margin to the anterior of rectum or posterior margin of the pubic symphysis to cover internal iliac nodes (which ever is more anterior)
Lateral	Anterior (T4 disease): 2- to 3-cm margin to the anterior of rectum or anterior margin of the pubic symphysis to cover external iliac nodes (which ever in more anterior)
	Posterior: 1 cm behind the anterior edge of the sacrum, or many will include the entire sacrum
Boost	Gross tumor or tumor bed plus 3 cm in all directions

Lu, J., & Brady, Luther W. (2010). *Decision Making in Radiation Oncology* (Medical Radiology Radiation Oncology). Dordrecht: Springer.

Rectal Cancer IMRT

- Improved target coverage, homogeneity, and conformality, while lowering dose to adjacent organs-at-risk.
- The use of preoperative IMRT–IGRT with a SIB resulted in a high 5year LC rate and non-negligible late toxicity

VMAT

- MLCs moving continuously as gantry rotates
- Delivering a sculpted, tightly-focused beam of radiation directly to a tumor in less than two minutes.

Varian Medical Systems ®

Female Pelvic Anatomy

Morton, D., Albertine, Kurt H., & Foreman, K. Bo. (2011). *The big picture gross anatomy* (McGraw-Hill's AccessMedicine). New York, N.Y.: McGraw Hill Medical.

Vaginal Side Effects

- Sexual Dysfunction
- Dyspareunia
- Dryness
- Stenosis

Management Techniques

- Dilators
- Pelvic Floor Muscle training
- Lubricants
- Moisturizers
- Estrogen

Vaginal Dilators

- includes the use of dilators, sexual intercourse, vibrators, fingers, or similar shaped devices
- commenced 2-8 weeks post radiotherapy,
- Risk of rectovaginal fistulae and psychological consequences
- Non-consistent education and compliance

Vaginal sparing: what is being done?

NOTHING! Why?

- Doesn't effect all people with rectal cancer
- Older women are less interested in sex
- Vagina is difficult to contour
- Not previously possible with 3DCRT
- Lack of literature
- Uncomfortable subject to talk about.

Vaginal sparing: what is being done?

Dosimetric Predictors of Radiation-Induced Vaginal Stenosis After Pelvic Radiation Therapy for Rectal and Anal Cancer

Christina H. Son, MD,* Ethel Law, RN,* Jung Hun Oh, PhD,[†] Aditya P. Apte, PhD,[†] T. Jonathan Yang, MD,* Elyn Riedel, MS,[‡] Abraham J. Wu, MD,* Joseph O. Deasy, PhD,[†] and Karyn A. Goodman, MD*

Departments of *Radiation Oncology, [†]Medical Physics, and [†]Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, New York

Received Aug 5, 2014, and in revised form Feb 7, 2015. Accepted for publication Feb 17, 2015.

- As vaginal mean dose increases, vaginal stenosis increases.
- Severe vaginal stenosis is significantly reduced at mean doses <43Gy</p>

Study Objectives

- To investigate whether VMAT treatment plans with, and without, vaginal sparing could significantly reduce the volume of the vagina that receives 20Gy (V20Gy), 30, 40, 45, or 50Gy when targeting rectal cancer tumours.
- Determine whether the maximum dose delivered, and the mean dose delivered are significantly different between the two treatment plans.

Methods

- Sample Size = 10 patients (Retrospective)
- ► Inclusion:
- 1) Diagnosed locally advanced rectal cancer
- 2) Stage T3, N1-2, MX/MO (Lower 1/3)
- 3) Recent pre-op MRI available for delineating the vagina
- 4) pre-operative 3DCRT At CancerCare Manitoba
- 5) 45G/25 FXs to the primary disease and lymph nodes, Boost 5.4Gy/3 FXs
- 6) simulated supine with full bladder and knee rest.

Contouring

- Vagina contoured by single physician
- Pre-op MRI used for delineating vagina
- Target volumes and OARs contoured as per RTOG Anorectal Atlas

Contouring

Contouring

VMAT

- ► Two 360° coplanar arcs
- ► 6 MV
- Eclipse® V11 planning software(Varian Medical Systems)
- ► Rapid Arc® (VMAT)
- 2 phases 45GY/25 FXs, 5.4Gy/3FXs

Optimization

- ► Target coverage: D100% = 95% Rx, Dmax <107%
- OARs: Bladder, small bowel, femoral heads

2VMAT Plans

- 1) VMAT plan (normal)
- Goals: Target coverage, OARs ALARA
- 2) VMAT with vagina objective
- Goals: decrease vagina dose without compromising target coverage and OAR sparing.

- Formal comparisons between the two treatment plans were carried using Wilcoxon signed-rank testing
- All data were available for analysis except the V20 and V30Gy volumes due to a lack of variability.
- Significant differences, even with the Bonferroni correction, were observed for the mean and maximum doses delivered, as well as for the V50Gy volumes.
- ► The V45Gy volumes also appeared different between the two treatment plans (Table 2) and would normally be considered significant at the *P*-value≤0.05 threshold, but because the threshold *P*-value was adjusted using the Bonferroni correction, it was no longer significant.

Table 1: Descriptive statistics of mean and maximum doses delivered by each of the VMAT treatment plans.

Variable	Median	IQR	90 th percentile	Minimum	Maximum
VMAT					
Mean Dose (cGy)	4990.90	71.60	5044.80	4779.20	5048.90
Maximum Dose (cGy)	5255.85	44.40	5314.60	5150.50	5319.40
VMAT with vaginal sparing					
Mean Dose (cGy)	4779.50	130.4	4876.00	4654.20	4880.20
Maximum Dose (cGy)	4962.80	65.20	5022.35	4922.3	5025.20

Table 2: Frequency and percent of volumes of the vagina exposed to 20, 30 40, 45 or 50Gy by each of the two VMAT treatment plans.

	VMAT			VMAT with vaginal sparing					
Values	Frequency	Percent	Values	Frequency	Percent				
V20Gy			V20Gy						
100.00	10	100.00	100.00	10	100.00				
V30Gy			V30Gy						
100.00	10	100.00	100.00	10	100.00				
V40Gy			V40Gy						
99.20	1	10.00	96.90	1	10.00				
100.00	9	90.00	99.10	1	10.00				
			100.00	8	80.00				
V45Gy									
93.30	1	10.00	V45Gy						
95.30	1	10.00	61.50	1	10.00				
98.20	1	10.00	74.90	1	10.00				
99.80	1	10.00	97.20	1	10.00				
100.00	6	60.00	98.20	1	10.00				
			99.30	1	10.00				
V50Gy			99.80	1	10.00				
14.00	1	10.00	100.00	4	40.00				
36.60	1	10.00							
37.30	1	10.00	V50Gy						
43.30	1	10.00	0.00	7	70.00				
46.90	1	10.00	0.01	1	10.00				
48.20	1	10.00	0.03	1	10.00				
60.10	1	10.00	0.10	1	10.00				
64.50	1	10.00							
67.40	1	10.00							
68.60	1	10.00							

DVH Comparison

Some structures are unapproved or rejected

D	OVH Line Structure	Approval Status	Plan	Course	Volume [cm ²]	Dose Cover.[%]	Sampling Cover.[%]	Min Dose [cGy]	Max Dose [cGy]	Mean Dose [cGy]
	Bladder 3	Approved	Sum Spare	Patient 3	236.2	100.0	100.0	900.2	4977.7	2952.4 💌
-	Bladder 3	Approved	Sum NoSpare_3	Patient 3	236.2	100.0	100.0	921.8	4889.1	2993.1 💌
	CTV45E 3	Approved	Sum Spare	Patient 3	828.8	100.0	100.0	4264.0	5338.4	4791.4 💌
	CTV45E 3	Approved	Sum NoSpare_3	Patient 3	828.8	100.0	100.0	4196.9	5344.6	4777.1 💌
	CTV50.4E 3	Approved	Sum Spare	Patient 3	120.5	100.0	100.0	4738.5	5320.1	4990.7 💌
	CTV50.4E 3	Approved	Sum NoSpare_3	Patient 3	120.5	100.0	100.0	4764.1	5344.6	4982.1 💌
	External 3	Approved	Sum Spare	Patient 3						•
	External 3	Approved	Sum NoSpare_3	Patient 3						
	FemurLt 3	Approved	Sum Spare	Patient 3	134.1	100.0	100.0	1325.7	3787.9	2092.5 💌
	FemurLt 3	Approved	Sum NoSpare_3	Patient 3	134.1	100.0	100.0	1347.4	3816.3	2066.1 💌
	FemurRt 3	Approved	Sum Spare	Patient 3	137.5	100.0	100.0	1197.7	4016.8	1900.5 💌
	FemurRt 3	Approved	Sum NoSpare_3	Patient 3	137.5	100.0	100.0	1238.8	4063.6	1881.5 💌
	PTV45 3	Approved	Sum Spare	Patient 3	1598.5	100.0	100.0	4041.2	5338.4	4757.2 🔻
	PTV45 3	Approved	Sum NoSpare_3	Patient 3	1598.5	100.0	100.0	4089.2	5344.6	4741.2 💌
	PTV45 Opt 3	Approved	Sum Spare	Patient 3						
	PTV45 Opt 3	Approved	Sum NoSpare_3	Patient 3						
	PTV50.4 3	Approved	Sum Spare	Patient 3	338.7	100.0	100.0	4663.8	5338.4	5003.7 💌
	PTV50.4 3	Approved	Sum NoSpare_3	Patient 3	338.7	100.0	100.0	4714.1	5344.6	4997.3 💌
	Small Bowel 3	Approved	Sum Spare	Patient 3	320.8	100.0	100.0	364.5	4675.3	2393.7 💌
	Small Bowel 3	Approved	Sum NoSpare_3	Patient 3	320.8	100.0	100.0	363.5	4668.9	2399.0 💌
	Vagina 3	Unapproved	Sum Spare	Patient 3	18.3	100.0	99.9	4455.5	4922.3	4715.8
	Vagina 3	Unapproved	Sum NoSpare_3	Patient 3	18.3	100.0	99.9	4612.7	5290.7	4979.2 -

Phase 1: 45 Gy

Plan Sum: 50.4 Gy/28Fx

Discussion

- Significance of decreasing the V50Gy, mean and maximum doses
- Contouring
- Vaginal Motion
- Use of a dilator during RT
- ► IGRTs role in vaginal sparing
- Concerns

reducing the V50Gy, mean, and maximum dose

Does Vaginal Sparing translate to decreased toxicity?

Dosimetric Predictors of Radiation-Induced Vaginal Stenosis After Pelvic Radiation Therapy for Rectal and Anal Cancer

Christina H. Son, MD,* Ethel Law, RN,* Jung Hun Oh, PhD,[†] Aditya P. Apte, PhD,[†] T. Jonathan Yang, MD,* Elyn Riedel, MS,[‡] Abraham J. Wu, MD,* Joseph O. Deasy, PhD,[†] and Karyn A. Goodman, MD*

Departments of *Radiation Oncology, [†]Medical Physics, and [†]Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, New York

Received Aug 5, 2014, and in revised form Feb 7, 2015. Accepted for publication Feb 17, 2015.

Purpose: Although vaginal stenosis (VS) is a recognized toxicity in women who receive pelvic radiation therapy (RT), the relationship between RT dose and the volume and extent of toxicity has not been analyzed. We modeled this relationship to identify predictors of VS.

Methods and Materials: We evaluated 54 women, aged 29 to 78 years, who underwent pelvic RT for rectal or anal cancer during 2008 to 2011 and were enrolled in a prospective study evaluating vaginal dilator use. Maximum dilator size was measured before RT (baseline) and 1 month and 12 months after RT. Dilator use was initiated at 1 month. The difference (D) in dilator size before and after RT was recorded. Those with $D \leq -1$ were classified as having VS (n=35); those with $D \geq 0$ were classified as having no VS (n=19 at 1 month). Dose-volume parameters were extracted, and the generalized equivalent uniform dose (gEUD) was used to build a predictive model.

Results: The mean vaginal doses were 50.0 Gy and 36.8 Gy for anal and rectal cancer patients, respectively. One month after RT, a gEUD model using a wide range of a values suggests that sparing of vaginal volume to a low dose may be important. When gEUD (a = -1) was <35 Gy and the mean vaginal dose was <43 Gy, severe VS was reduced (P = .02). A 1-year analysis suggests increasingly negative D values with increasing mean dose. However, patients with compliance <40% were more likely to have toxicity.

Conclusions: Vaginal stenosis is influenced by multiple RT dose-volume characteristics. Mean dose and gEUD constraints together may reduce the risk of severe VS.

Vaginal Motion

VAGINAL MOTION AND BLADDER AND RECTAL VOLUMES DURING PELVIC INTENSITY-MODULATED RADIATION THERAPY AFTER HYSTERECTOMY

Anuja Jhingran, M.D.,* Mohammad Salehpour, Ph.D.,[†] Marianne Sam, B.S.,* Larry Levy, M.S.,* and Patricia J. Eifel, M.D.*

Departments of *Radiation Oncology and [†]Radiation Physics, The University of Texas M. D. Anderson Cancer Center, Houston, TX

Purpose: To evaluate variations in bladder and rectal volume and the position of the vaginal vault during a 5-week course of pelvic intensity-modulated radiation therapy (IMRT) after hysterectomy.

Methods and Materials: Twenty-four patients were instructed how to fill their bladders before simulation and treatment. These patients underwent computed tomography simulations with full and empty bladders and then underwent rescanning twice weekly during IMRT; patients were asked to have full bladder for treatment. Bladder and rectal volumes and the positions of vaginal fiducial markers were determined, and changes in volume and position were calculated.

Results: The mean full and empty bladder volumes at simulation were 480 cc (range, 122–1,052) and 155 cc (range, 49–371), respectively. Bladder volumes varied widely during IMRT: the median difference between the maximum and minimum volumes was 247 cc (range, 96–585). Variations in rectal volume during IMRT were less pronounced. For the 16 patients with vaginal fiducial markers in place throughout IMRT, the median maximum movement of the markers during IMRT was 0.59 cm in the right–left direction (range, 0–0.9), 1.46 cm in the anterior–posterior direction (range, 0.8–2.79), and 1.2 cm in the superior–inferior direction (range, 0.6–2.1). Large variations in rectal or bladder volume frequently correlated with significant displacement of the vaginal apex.

Conclusion: Although treatment with a full bladder is usually preferred because of greater sparing of small bowel, our data demonstrate that even with detailed instruction, patients are unable to maintain consistent bladder filling. Variations in organ position during IMRT can result in marked changes in the position of the target volume and the volume of small bowel exposed to high doses of radiation. © 2012 Elsevier Inc.

Vagina Contouring

- Image registration issues
- Need to generate consistent guidelines

Dilator during RT

Reproducibility and genital sparing with a vaginal dilator used for female anal cancer patients

Tina Marie Briere ^{a,*}, Christopher H. Crane ^b, Sam Beddar ^a, Priya Bhosale ^c, Henry Mok ^b, Marc E. Delclos ^b, Sunil Krishnan ^b, Prajnan Das ^b

^a Department of Radiation Physics; ^b Department of Radiation Oncology; and ^c Department of Diagnostic Radiology, UT MD Anderson Cancer Center, Houston, TX, USA

Published by Elsevier Ireland Ltd. Radiotherapy and Oncology 104 (2012) 161-166

IGRT

- ▶ IGRT improvements \rightarrow Smaller margins \rightarrow Less vagina in field
- Daily vagina assessment
- Adaptive radiotherapy
- Bladder filling

Concerns

Potential risk of marginal relapse

Conclusion

VMAT planning using an objective to spare the vagina can significantly reduce the volume of vagina receiving 50Gy, as well as the Dmax and Dmean, without compromising target coverage or adjacent organs at risk

dose constraints.

W D	VH Line Structure	Approval Status	Plan	Course	Volume (cm ³)	Dose Cover [%]	Sampling Cover [%]	Min Doaw (cG))	Max Dose (cG)	Mean Dose (cGy)
	Bladder 3	Approved	Sam Spare	Patient3	236.2	100.0	100.0	100.2	4077.7	2952.4 •
2	Elladder 3	Approved	Sum Notipare_3	Patient.3	236.2	100.0	100.0	921.8	48891	2983.1 *
17	CTV45E 3	Approved	Sum Spane	Patient 3	\$28.8	100.0	100.0	4264.0	5338.4	4791.4 💌
17	CTWISE 3	Approved	Sum NoSpare_3	Patient 3	828.8	100.0	100.0	4196.9	5344.6	4777.1 💌
2	GTV10.4E 3	Approved	Sum Spare	Patient 3	120.6	100.0	100.0	4736.5	5320.1	49907 *
17	CEVED.4E 3	Approved	Dum Notipare_3	Patient1	120.5	100.0	100.0	4764.1	5344.0	4082.1 .
F -	External 3	Approved	Sum Spare	Palient3						
F	Edental 3	Approved	Sum NoSpare_3	Patient'3						*
2	FernurL1.3	Approved	Sum Soare	Patient3	134.1	100.0	100.0	1326.7	3787.9	2082.5
1	Femalt3	Approved	Sum NoSpare 3	Patient 3	134.1	100.0	100.0	1347.4	3810.3	2006.1 .
17	FernturFit 3	Approved	Sum Splare	Patient3	137.5	100.0	100.0	1197.7	4016 8	1000.5 💌
7	Femulti 3	Approved	Sum Noticare_3	Patient 3	\$37.5	100.0	100.0	1230.8	4063 0	1015 -
5	PTV45.3	Approved	Sum Spare	Patient3	1500 5	100.0	100.0	4041.2	5338.4	4757.2 •
17	PTV45.3	Approved	Sun Noteure_3	Patient.3	1508.5	100.0	100.0	4080.2	5344.6	4741.2 💌
	PTV45 Opt 3	Approved	Sum Spare	Patient2						
	PTV45 Opt 3	Approved	Sum NoSpare_3	Patient3						-
17	PTV50.4.2	Approved	Sum Spare	Patient 3	330.7	100.0	100.0	4663.8	5338.4	5003.7 .
17	PTVIO A 3	Approved	Sum NoSpare_3	Pateri 1	230.7	100.0	100.0	4754.1	5344.6	40973 =
2	Small Dowell 3	Approved	Sum Spare	Patient 1	320.8	100.0	100.0	264.5	4676.3	2393.7 💌
2	Small Down 3	Approved	Sum NoSpare_3	Patient3	320.0	100.0	100.0	363.5	4668.9	2309.0 •
7	Vagea 3	Unapproved	Suro Spare	Patient3	10.3	100.0	92.0	4455.5	4922.3	4715.8 *
17	Vapina 3	Unapproved	Sum NoSpare_3	Patient 3	18.3	100.0	99.0	4612.7	5200.7	4979.2 .

Acknowledgment

- Bashir Bashir MD
- Oliver Bucher
- Eric VanUytven
- Junaid Khan
- John loculano

Thank you!