

- Because of the longevity of these patients, the quality and outcome of treatment for benign disease may not be evident for many years (decades)
- Thus, long-term follow-up is essential in evaluating outcomes

Slide 6

cp1 culin peddada, 4/17/2018

Introduction to benign tumors

- Histological benign
- Functional deficits that can persist for years
- Surgically challenging at times
- Without treatment, significant neurological morbidity and mortality can occur
- Prolonged survival can be expected for most patients
- Both short- and long-term outcomes after treatment must be acceptable

Introduction: Meningiomas

- Imaging: Dural-based enhancing mass w/cortical buckling –often have tail
- Hyperostosis, irregular cortex, intra-tumoral Ca++
- Etiology
 - Radiation exposure
 - Head trama
 - Viral infection
 - Estrogen receptors
 - Genetic predisposition

CLINICAL MANIFESTATIONS

- · Many are asymptomatic—found incidentally by MRI
- But may have symptoms:
- · Tumor location: by compression of underlying neural structures
- Location
 - Cerebral convexity (Sylvian & parasagittal areas)
 - Falx cerebri
 - Skull base
 - Olfactory groove
 - Sphenoid ridge
 - CP angle
 - Tuberculum sella

Diagnosis

- Cranial CT Scan
- Isointense or slightly hyperintense
- Hyperostosis-20%
- MR Isointense (65%) or hypointense (35%) in T1 and T2
- Angiography
 - Hypervascular
 - embolization reduce the risk of intraoperative bleeding
- MR Angiography & Venography

Degree of Resection	Recurrence rate	
Complete resection with dural margin	9%	
Complete resection with coagulation of dura	19 %	
Complete resection	29 %	
(no treatment of dura)		
Partial removal leaving tumor <i>in situ</i>	40 %	
Decompression	NA	

Optic Nerve Radiation Tolerance

 Tishler (1996) 	8 Gy
------------------------------------	------

- Duma (1993) 9 Gy
- Leber (1998) 10 Gy
- Stafford (2003) 12 Gy

- Typically 12 16 Gy to the margin of the lesion
- Located at least 3-5 mm from optic nerve or chiasm (preferably 5 mm)
- Fractionated schedules
 - larger lesions
 - impinging on the optic apparatus
 - < 1cm Parasagital/parafalcine location

- Risk factors:
 - NF2 bilateral vestibular schwannomas
 - Loud noise (Edwards et al. AM J. Epidemol 2006; 163: 327-33)
- Histopathology
 - Equal frequency on superior and inferior branches of the vestibular portion of the VIII nerve

- Observation
- Microsurgery
- Radiation therapy
 - -SRS
 - -FSRT (3-5 fx)
 - -Conventionally fractionated radiation (25-30 fx)

Goals of treatment

- Long-term tumor control
- Preservation of CN function
 hearing
 - -balance
- Maintenance of QOL

<section-header> Observation An acceptable option for certain patients Elderly Contraindications for Surgery Small incidentally found asymptomatic tumors Evidence of slow tumor growth Less than 30% of untreated acoustic neuromas have growth greater than 2.0 mm/year on MR imaging Tumors larger than 2.0 cm are more likely to grow Rate of growth is usually constant, but may have sudden increase in size

Vestibular schwannoma-surgery

• Approaches

- Retromastoid (retrosigmoid), suboccipital
 - -Best for large tumors compressing the brain stem
- Trans-labyrinthine
- -Small tumors-will sacrifice hearing
- Middle cranial fossa
 - -Small tumors, with the goal of hearing preservation

Surgery

- Recommended for large tumors compressing the brain stem and 4th
- Allows for Hearing Preservation, mostly with small tumors (<1.5cm) and through a middle fossa approach (45-82%)
- Complications:
 - CN VII weakness
 - 43-72 % of patients with large tumors
 - 3-7% of patients with small tumors
 - CSF leak 5-15 %
 - Headaches 23-46%

Gormley et al. Neurosurg 1997; 41(1), 50-8

	Microsurgery	SRS
Tumor control rate	97 % (GTR)	98.6 ± 1.1 %
Facial nerve function preservation	67 %	100 %
Useful hearing preservation	24 %	78.6 ± 5.1 %
(Class I or II)		
Hydrocephalus or CSF leak	6.5 %	0.8 %
Death (perioperative or d/t delayed progression)	0.5 %	0.1 %

Gardener-Robe	rtson Classification	
Auditory Grade	Pure Tone Loss dB	% Speech Discrimination
1. Good	0-30	70-100
2. Serviceable	31-50	50-69
3. Nonserviceable	50-90	5-49
4. Poor	91 maximum	1-4
5. None	Nontestable	0

Adapted from Kaplan, DM et al., Otolaryngology 2003; 32:23-32

SRS vs FSR

- Fractionated radiotherapy relies on differences in radiosensitivity and repair capability between normal and neoplastic tissue to achieve a reasonable therapeutic index
 - Allows for treatment of large tumors indenting the brain stem
- Stereotactic radiosurgery relies on the physical parameters of accuracy of targeting and steepness of radiation fall off at the edge of the treatment volume for its therapeutic index
 - Efficient treatment delivery

Linskey, M., J Neurosurg (Suppl 3) 2000;93:90-95

Introduction: Pituitary adenomas

- 10–20% of all primary brain tumors
- Often asymptomatic
- Benign sellar tumors
- Most common in adults
 - 3rd 4th decade
- Subtypes:
 - Excess secretion of normal pituitary hormones (2/3)
 - Non secreting (1/3)

CLINICAL MANIFESTATIONS OF TUMORS OF THE PITUITARY GLAND

- · Compression of neural and vascular structures
- Headache
- · Hypopituitarism
- · Visual symptoms
 - visual field abnormality: bitemporal hemianopsia is the most common
- · Papilledema is rare
- · May enlarge with pregnancy
- 5% of pituitary adenoma present with pituitary apoplexy

Indications for SRS of the Pituitary

- Extension into the cavernous sinus
- Incomplete surgical extirpation
- Recurrence post external beam radiation
- Inoperable patients
- Reverses endocrinopathies faster and more reliably than fractionated radiation therapy
- Local control rates 90 -100%

- Oversecretion of hormones results in significant incidence of morbidity and reduced life expectancy (acromegaly 4.1 x higher risk to die compared to cured pts or normal population)
- Goals:
 - Tumor control
 - Preservation of normal pituitary function
 - Correction of endocrinopathies is essential to good outcome

	Mean time to N	Cumulative N
SRS	1.03 years	86% after 3.4 yrs
Fractionated radiotherapy	6.52 years	82 % after 12.4 yrs

Complications of radiosurgery

Evaluate for endocrine dysfunction (>60 % at 17 yrs) Vascular injury (4/1621) Vision loss (16/1621) Radiation necrosis (13/1621) Second malignancies (0/1621) Injury to cranial nerves(21/1567)

> Sheehan JP et al. J Neurosurg 102:678-691, 2005 Laws ER et al. J Neuro-oncol 69:257-27, 2004

