

RECOGNIZING CONTRIBUTORS

RECOGNIZING CONTRIBUTORS, EXCEPT IN 2015

AAMD Award of Excellence

2007 Keith Moore
2008 Matt Tobler
2009 Robert Adams
2010 Lon Marsh
2011 Rudi Bertrand
2012 Randall Merrill
2013 Nishele Lenards
2014 Anne Marie Vann

2015

2016 Mark Russell

https://www.medicaldosimetry.org/membership/aamd-award-of-excellence/

VISION

"The decisions we make about "where we will work" for future medical dosimetrists may not be "in which state will I work," but rather "in which country will I work"

-Adams, R. The future of medical dosimetry. *Med Dos.* **40**: 160; 2015.

Is this statement realistic?

I believe it is, let me show you why.

Yes, Dr. Adams gave me permission to use this image

GLOBAL IMBALANCE OF RT RESOURCES

WHO estimates that by the year 2020, approximately 20 million new cancer cases will be reported annually with nearly 70% of those cases occurring low- and middle-

income countries (LMICs)

LMICs countries <US \$12,615 GNI

139 countries are considered LMICs and of these 110 are member states of the IAEA DED SEASON U.S. No. MAR SECO

Welch, I. Joiobal imbalances in radiation therapy resources. Radiation Interopist. 24:211-213; 2013.; Dotta, et al. Radiation Therapy Infrastructure and Human Resources in Low- and Middle-Income Countries: Present Status and Projections for 2020. International Journal of Radiation Oncology. 89:448-457; 2014. https://en.wikigedico.org/wiki/Member states. of the International Atomic. Energy. Agency#Non-member.

GLOBAL IMBALANCE OF RT RESOURCES

As of 2017 13,719 teletherapy units are available worldwide

3,689 units are located in the US

3,689 units serve 4.4% of the worlds population

The remaining 10,030 units serve 96.4% of the world's population

Weldh, T. Global imbalances in radiation therapy resources. Radiation Therapist. 24:211-213; 201 https://dirac.iaea.org/Data/Country

GLOBAL IMBALANCE OF RT RESOURCES

LMICs 0.71 teletherapy units/million

High income 7.62 teletherapy units/million

Datta, et al. Radiation Therapy Infrastructure and Human Resources in Low- and Middle –Income Countries: Present Status and Projections for 2020. IJRO. 89:448-457;2014.

GLOBAL IMBALANCE OF RT RESOURCES

To better understand this imbalance let's look at some individual country's rad onc resources

Country Population

- # Radiotherapy centers
- # Radiation Oncologists
- # High energy teletherapy machines

UNITED STATES OF AMERICA

Population 324,743,220

Radiotherapy centers 1981

Radiation Oncologists 2,683

High energy teletherapy machines 3689

(includes Co-60)

World Health Organization – Cancer Country Profiles, 2014; https://www.census.gov/popclock/; IAEA DIRAC

CANADA

Population 35,151,728

Radiotherapy centers 58

Radiation Oncologists 358

High energy teletherapy machines 285

(includes Co-60)

World Health Organization - Cancer Country Profiles, 2014; http://www.cbc.ca/news/politics/grenier-2016-census-population-1,3970314; IAEA DIRAC

CHINA

Population 1,390,000,000

Radiotherapy centers 1,086

Radiation Oncologists 7,121

High energy teletherapy machines 1,684

(includes Co-60)

World Health Organization - Concert Country Profiles, 2014

Data and All Publisher. The country is forward to the control of the country of t

NEPAL

Population 27,800,000

Radiotherapy centers 6

Radiation Oncologists 16

High energy teletherapy machines 9

(includes Co-60)

World Health Organization - Cancer Country Profiles, 2014; IAEA DIRAC

HONDURAS

Population 7,936,000

Radiotherapy centers 5

Radiation Oncologists 4

High energy teletherapy machines 7

(includes Co-60)

World Health Organization - Cancer Country Profiles, 2014: IAEA DIRAC

GUATEMALA

Population 15,083,000

Radiotherapy centers 4

Radiation Oncologists 10

High energy teletherapy machines 11

(includes Co-60)

Vorld Health Organization – Cancer Country Profiles, 2014; IAEA DIRAC

IRAQ

Population 32,778,000

Radiotherapy centers WHO 18 IAEA DIRAC 8

Radiation Oncologists 27

High energy teletherapy machines 13

(includes Co-60)

World Health Organization - Cancer Country Profiles, 2014; IAEA DIRAC

IRAN

Population 76,424,000

Radiotherapy centers 37

Radiation Oncologists 147

High energy teletherapy machines 67

(includes Co-60)

World Health Organization – Cancer Country Profiles, 2014; IAEA DIRAC

ZIMBABWE

Population 13,724,000

Radiotherapy centers 2

Radiation Oncologists 6

High energy teletherapy machines 5

(includes Co-60)

World Health Organization - Cancer Country Profiles, 2014; IAEA DIRAC

MADAGASCAR

Population 22,294,000

Radiotherapy centers 2

Radiation Oncologists 3

High energy teletherapy machines 3

(includes Co-60)

World Health Organization – Cancer Country Profiles, 2014; IAEA DIRAC

MAJOR OBSTACLES LIMITING RT IN LMICS

Lack of accessibility

Affordability

Trained personnel

Offense/High expectations

Maintaining Equipment

Cultural factors

Welch, T. Global imbalances in radiation therapy resources. Radiation Therapist. 24:211-213; 2015
Grover et al. A Systematic Review of Radiatherapy Capacity in low-and middle-income Countries. Frontiers in Oncology 380: 1-11; 20

Date et al. Registration Review in Reduction in Resources in Low- and Middle-Income Countries Present Status and Projections for 2020. International Journal of Radiation Oncology. 89:448-457; 2014

COST OF A RADIOTHERAPY CENTER IN AN LMIC

Very basic RT facilities cost 3-5 million

Equipment accounts for about $\frac{1}{2}$

Building is \$0.7-1M

Includes:

TX vault

Simulation room

HDR vault

Planning room

Pt. waiting areas

Nurses station,

Reception

IAEA. Setting up a Radiotherapy Programme: Clinical, Medical Physics, Radiation Protection, and Safety Aspects. 200

COST OF A RADIOTHERAPY CENTER IN AN LMIC

External Beam Equipment: 1.5-2M

Includes:

Single Energy linac

CT Simulator

TPS

Immobilization devices

Beam measurement & QA devices

AEA. Setting up a Radiotherapy Programme: Clinical, Medical Physics, Radiation Protection, and Safety Aspects. 2008

Co-60 UNIT ALTERNATIVE

Advantages:

Dependability

Simplicity of repair

Less sophisticated to manage safely

Maintenance cost 6x less than a linac

Easier to learn

http://www.theratronics.ca/index.html
Page et al. Cobalt. Linac. or Other: What is the Best Solution for Radiation Therapy in Developing Countries? URO, 89:476-480: 2014

COST OF A RADIOTHERAPY CENTER IN AN LMIC

Brachy Equipment, HDR or LDR: 03-0.5 M

Includes:

Afterloaders

X-ray C-arm

TPS

Applicators

QA Equipment

IAEA. Setting up a Radiotherapy Programme: Clinical, Medical Physics, Radiation Protection, and Safety Aspects. 2008 Grover et al. A Systematic Review of Radiotherapy Capacity in low-and middle-income Countries. Frontiers in Oncology 380; 1-11; 2015

COST OF A RADIOTHERAPY CENTER IN AN LMIC

Personnel: 0.5-1M

Includes:

2-3 Rad Oncs

2-3 Medical Physics Staff

RTT's

Oncology Nurse

Maintenance Techs

IAEA. Setting up a Radiotherapy Programme: Clinical, Medical Physics, Radiation Protection, and Safety Aspects. 2008

OPPORTUNITY?

Who's responsible for getting assistance to these underserved countries?

Non-profit Organizations offering opportunities to medical radiation workers

IAEA. Setting up a Radiotherapy Programme: Clinical, Medical Physics, Radiation Protection, and Safety Aspects. 200

IAEA PACT

Established in 2004

Designed to assist low-middle-income IAEA countries in radiation therapy

Affiliated with 13 other organizations

Seek to deliver:

Greater access to care

Build skills & knowledge

Raise funds for cancer services

PACT Overview Flyer, http://cancer.iaea.org/documents/PACT_overview_flyer_web_en.pdf

IAEA PACT SERVICES

imPACT Reviews (Integrated Missions od PACT)

 Assessment of a country's cancer control capacity & needs

VUCCnet (Virtual University for Cancer Control)

Online eLearning platform

AGaRT (Advisory Group on Increasing Access to Radiotherapy Technology)

 Explores innovative ways to provide affordable, effective, and quality radiotherapy solutions

Advocacy and resource mobilization

 Supports member IAEA states in mobilizing resources and raising awareness of the increasing cancer burden

PACT Overview Flyer, http://cancer.iaea.org/documents/PACT_overview_flyer_web_en.pdf

PROJECT HOPE (HEALTH OPPORTUNITIES FOR PEOPLE EVERYWHERE)

Established in 1958

International Health Care Organization

Goal is to establish sustainable health care throughout the world

& provide humanitarian assistance

In a 2015 annual report:

Nearly 1 million people reached

23,700 health care workers trained

46,711hours of care provided by volunteers

\$206M of donated medical supplies delivered

http://www.projecthope.org/assets/documents/PH-Annual-Report-2015-FINAL1.pdf

RADIATING HOPE

100% volunteer-run

Non-profit group seeking to improve cancer care around the world

Provide radiation equipment and treatment to the people of developing countries

Placed radiation machines in 15 different countries

http://www.projecthope.org/assets/documents/PH-Annual-Report-2015-FINAL1.pdf

Photo: Shilpen Pate Shilepn Patel

Shilepn Patel
http://www.foxnews.com/health/2017/03/28/climbing-mt-kilimanjaro-to-help-fight-cancer.html

RAD-AID INTERNATIONAL

Created in 2008 by a group of radiologists trained at Johns Hopkins Hospital

RAD-AID's mission is to increase and improve radiology resources in the developing and impoverished countries

Includes both diagnostic and therapeutic

They have a long-term commitment to the region they are serving

This commitment includes: Sustained dialogue, education, resources, and collaboration

https://www.rad-aid.org

RAD-AID INTERNATIONAL

Trademarked analysis tool for analyzing, planning, and implementing projects

Process uses data collection & analysis so RAD-AID can optimize every project

https://www.rad-aid.org/countries/how-we-work/

RAD-AID INTERNATIONAL

The Radiology-Readiness Assessment begins with an 81 page survey

This document seeks to

- Understand the healthcare benefit and impact your facility is delivering to the local community
- Identify the potential wider benefit that your institution could provide with radiology services,
- Understand the infrastructural, epidemiological, educational, administrative, logistical, financial and clinical features of the institution in order to optimize radiology service delivery to patients

https://www.rad-aid.org/countries/how-we-work/

RAD-AID INTERNATIONAL

The planning stage looks at the viability of the project

https://www.rad-aid.org/countries/how-we-work/

RAD-AID INTERNATIONAL

Analysis and Innovation

Analyze results of program

- Identify new challenges
- Find new resources to strengthen the program

https://www.rad-aid.org/countries/how-we-work/

RAD-AID IN PRC

In 2010 a Radiology Readiness Assessment was performed by Mark Lessne MD and Janet Walker RTT

Collaborated with Project Hope

They traveled to: Yinchuan, Shanghai, and Zhengzhou

The initial assessment discovered:

- Pediatric radiology
- Cancer imaging and treatment

In 2011RAD-AID & Project Hope held an International Radiology Faculty Lecture Program

Sponsored by Philips

Program was based on the Radiology Readiness Assessment

https://media.asrt.org/pdf/publications/RTT14_Vol23_No2.pdf; https://www.rad-aid.org/countries/global-outreach/asia/china/

In 2014 RAD-AID and the ASRT foundation began collaborating to offer funded opportunities to support radiation therapists interested in serving in China.

The 1st delegation for rad onc was sent to Yinchuan Tumour Hospital

The site was chosen because:

- Hospital had viable technology
- Staff had basic training in radiation therapy
- The staff desired collaboration with RAD-AID

Walker, J. A Radiation Therapist's RAD-AID Experience in China. Radiation Therapist. 23:197-200; 2014

YINCHUAN

In November 2014 Taeko Yoshizaki CMD, and Kate Ryan RTT visited Yinchuan

Kate and Taeko worked tirelessly to establish a relationship with staff and

fact find.

No physician from RAD-AID was present

- 21 rad oncs
- 5 medical physicists
- 15 RTT's

Utilization of Pinnacle and Eclipse TPS

2 Pinnacle & 1 Eclipse

akeko Yoshizaki & Kate Ryan RAD-AID Field Note:

RAD-AID IN THE PRC

Findings that may be of interest

- TX planning CT is often the very first diagnostic scan the patient receives
- Patients receive custom immobilization devices made out of thermoplastic & receive contrast
- Tattoos are not given
- All contours except for optimization structures are contoured by the physicians
- Each physician has access to Pinnacle TPS in their office and completes contours in 2-3 days
- Physicists work 8-10 hours a day
- TX plans are assigned by the lead planning physicist

akeko Yoshizaki & Kate Ryan RAD-AID Field Notes

Findings that may be of interest

- 6-7 plans generated per day among 4 physicists
- IMRT QA Plans done 2x a week.
- Each physicist rotates for monthly QA responsibilities
- Therapists: responsible for scheduling own patients, clinic open for 12 hours, enable 120 pts per day to be treated
- 30-40 simulations per week
- CBCT taken weekly/bi-weekly for H&N & VMAT plan
- RTT's not responsible for making shifts on patients or interpreting images

Takeko Yoshizaki & Kate Ryan RAD-AID Field Notes

RAD-AID IN THE PRC

Yinchuan's Wish List

- OAR contouring on H&N TX sites
- Learning RTOG guidelines on Target /OAR structures and dose constraints
- Increase the # of TPS licenses
- Rad Onc nurse for next visit
- Development of simplified educational materials
- Pinnacle IMRT H&N and conformal demonstrations

Takeko Yoshizaki & Kate Ryan RAD-AID Field Notes

DAY 0

June 2015

RAD-AID's

3rd visit to Yinchuan

DAY 1; WHAT DAY IS IT?

A rest day?

 The hospital staff didn't want to meet with us until the rad onc was present

DAY 1; WHAT DAY IS IT?

We did what any good volunteer would do; go to the museum!

DAY 1; WHAT DAY IS IT?

DAY 1; WHAT DAY IS IT?

Next, I need to shop, of course!

DAY 2; YINCHUAN TUMOUR HOSPITAL

Just in case you were wondering?

\$5000 CYN = \$727.36 USD

No Spitting: xiaowei19890522

DAY 2; YINCHUAN TUMOUR HOSPITAL

Regional Lung Symposium

Speakers from across China

Dr. Patel spoke for 1 hr Myself 45 min Kim 25 min

DAY 2; YINCHUAN TUMOUR HOSPITAL

Topics centered on Lung CA

Presented 3D conformal planning

DAY 2; YINCHUAN TUMOUR HOSPITAL

After the symposium Obligatory pictures

Faculty lunch that lasted for hours

DAY 2; YINCHUAN TUMOUR HOSPITAL

Return to hospital for tour of Linacs, Physics room, & pt. floors

Followed by banquet that included Communist party leaders Local dignitaries Hospital administration

NIGHT 2; SHILPEN'S HOTEL ROOM

Patient's stay as inpatients 3 floors are dedicated to rad onc 44-60 beds per floor Inpatient rounds every am Elekta Precise Varian 21 ix Thermotherapy machine

DAY 3; TOURIST/TEAM BUILDING

Sunday clinic closed

Invited 2 physicians and nurse

Visited Sand Lake
Sand sledding & sand carting

Spent extensive time speaking about Patient care, planning, nursing

The opportunity to recreate together had the biggest impact

DAY 3; TOURIST/TEAM BUILDING

DAY 4; THE CLINIC

Each team member split off with own group

Presented on IMRT H&N Pinnacle No Interpreter Limited interaction

Physicists understood written English better than spoken

DAY 4; THE CLINIC

Remainder of the day observing TX planning

Quickly executed Scripting heavily utilized

4 Physicists on 2 boxes

Physicists receive datasets with all OARs and target structures

DAY 4; THE CLINIC

Scripting to create optimization structures

No cleaning or smoothing of structures

Optimization structures not trimmed from external contour

No metrics we used to evaluate target coverage only used for OARs

Target coverage evaluated by observing isodose clouds on cross section slices

HS value and location not evaluated

DAY 4; DEBRIEFING (PHYSICS)

Here are a few observations:

- Physician checks plans via remote connection
- Plans are checked by another physicist (peer review)
- Additional modality registration 10% of cases
- Plans are physically printed
- Monthly QA done by 5 physicists on Sat & Sun
- IMRT QA done by 3 physicists on Tues & Thurs
- Physicists are desirable of educational materials

- Physicists service machines (2-3 days to get parts)
- Claimed to be only be down 4-5 times a year
- Pre-treatment imaging underutilized (time?)
- Very minimal observable communication between therapists, physicians, and physicists
- Almost every plan delivered was IMRT
 - When asked why
 - Physicist: "good plan, makes low dose to critical structure"
 - Physician "reimbursement is higher"

DAY 4; DEBRIEFING (NURSING)

Here are a few observations:

- Limited support care
- Skin care was not common
- Kim demonstrated interaction w/ patients
- Pain medication use is rare
- Nursing education websites blocked
- Nutrition not observed
- Patient's don't decline treatment

DAY 4; DEBRIEFING (NURSING)

Here are a few observations:

- Limited support care
- Skin care was not common
- Kim demonstrated interaction w/ patients
- Pain medication use is rare
- Nursing education websites blocked
- Nutrition not observed
- Patient's don't decline treatment

DAY 5; CLINIC OBSERVATION & DISCUSSION

Supposed to give another presentation on esophageal planning but noticed interest was lacking

Therapists had a lot of questions regarding; set-up, pt care, & nursing strategies

DAY 5;

Wish list: Physicians

1 Week

Exchange program

Same Rad Onc team to visit

Research collaboration

How to put a port in

DAY 5;

Wish list: Physicists

Physicists who have same linacs
Increase time working together

Online training materials

Research collaboration

DAY 5;

Wish list: Therapists / Nursing

Aria

Online modules

More time!

SUCCESS?

首家县级行政审批局挂牌

本报电(黄伟伟) 由中央编办 和国务院法制办确定的相对集中行 政许可权改革国家级试点。全国首 家县级行政审批局日前在江苏省盱 眙县挂牌成立。 据介绍,新组建的行政审批局 将分两批接收23个部门管理的203 项审批事项,实现全县范围内"一 枚印章管审批"。目前,首批13个 部门的115项审批事项已划转到位。

中美医生宁夏交流

THE FUTURE OF RAD-AID IN PRC

Where does this leave RAD-AID & other volunteers?

- In 2016 2 RTT's and 1 Radiologist
- They broadened the support for diagnosis, monitoring, and treatment
- In 2017 a much more extensive trip is planned with a rad onc and diagnostic radiology team
 - Rad Onc & radiologist speak Mandarin
 - 2 RTTs

ACKNOWLEDGEMENTS

Melissa Culp, Vice President and COO of RAD-AID

Keith Greer, Director of ASRT Foundation

Shilpen Patel, MD FACRO

Kim Rappolt, OCN

Gu Shu Ping, Project Hope

Kaitlyn Ryan, RTT

Taeko Yoshizaki, CMD

Thomas Welch, RTT