



























| Plan Submission                            | GENER           | AL PLAN | N REQUIREMENTS                                     |                                       |  |
|--------------------------------------------|-----------------|---------|----------------------------------------------------|---------------------------------------|--|
| Catagonias                                 | Crit            | eria    | Clinical Plans                                     | Fantasy Plans                         |  |
| Categories.                                | RT Category     |         | External Beam Badiation Therapy ONLY               | External Beam Badiation Therapy ONLY  |  |
| - Clinical Plan                            | RT Technique    |         | 3D-CRT/IMRT/VMAT/TOMO/CK/IMPT                      | 3D-CRT/IMRT/VMAT/TOMO/CK/IMPT/        |  |
|                                            | # of Isocenters |         | ONE, unless machine limitations exist              | ONE, unless machine limitations exist |  |
| - Fantasy Plan                             | Dose Grid       | 1       | Uniform size & size < 3mm (The Smaller the better) | Uniform size AND size < 3mm           |  |
| Clinical Plan:                             | Heterogeneity   |         | Heterogeneity Corr. Should be used                 | Heterogeneity Corr. Should be used    |  |
|                                            | Energy          |         | Single or mixed beams                              | Single or mixed beams                 |  |
| - Clinical settings                        | Bolus           |         | No Bolus allowed                                   | No Bolus allowed                      |  |
| Dessenable Desm. On Time                   | Hybrid Te       | chnique | Allowed                                            | Allowed                               |  |
| - Reasonable beam-on time<br>Fantasy Plan: | # of<br>Fields  | 3D-CRT  | Max of 9 fields, Max of 5 non-coplanar             | No Limit                              |  |
|                                            |                 | IMRT    | Max of 9 fields, All should be coplanar            | No Limit                              |  |
|                                            |                 | VMAT    | Max of 4 arcs, All should be coplanar              | No Limit                              |  |
|                                            |                 | IMPT    | Max of 5 fields, All should be coplanar            | No Limit                              |  |
| - Use all available resources              |                 | 3D-CRT  | Should be less than 10 min                         | Should be less than 10 min            |  |
|                                            |                 | IMRT    | Should be less than 25 min                         | Should be less than 30 min            |  |
| - Be creative                              | Time            | VMAT    | Should be less than <b>10 min</b>                  | Should be less than 15 min            |  |
|                                            | nine            | IMPT    | Should be less than 10 min                         | Should be less than 15 min            |  |
|                                            |                 | томо    | Should be less than 20 min                         | Should be less than 30 min            |  |









# Latent Planning System Differences

The TPS converts 2D contours into 3D voxels and reports back a DVH. To do so it needs to make some decisions:

- 1. What happens between slices
- 2. What happens at the edge of the contour.

# DVH is not absolute.

To remove the bias and algorithmic difference between treatment planning systems we re-calculated the DVH based on the submitted DICOM data and then evaluated based on a scoring scale.

Pyplanscoring (written by Dr. Victor Gabriel Leandro Alves, D.Sc.) is :

- Vendor neutral
- It offers batched analysis
- It's validated with 800+ plans.





### 11







| Clinical | Plans -  | Ton Pl | anners | Per TPS |
|----------|----------|--------|--------|---------|
| Cunical  | r lans – | торгі  | anners | генгэ   |



| Planner Name        | Country       | Technique | Final Score | TPS                  | Hospitals                                              |
|---------------------|---------------|-----------|-------------|----------------------|--------------------------------------------------------|
| Chung Yin Mak       | China-HK      | VMAT      | 99.5        | Varian-Eclipse       | St. Teresa's Hospital                                  |
| Friedemann Herberth | Switzerland   | VMAT      | 99.3        | Varian-Eclipse       | Kantonsspital St.Gallen                                |
| Jonathan Stenbeck   | United States | VMAT      | 99.0        | Varian-Eclipse       | Greenville Health System                               |
| Kai Leung Li        | China-HK      | VMAT      | 98.7        | Varian-Eclipse       | St. Teresa's Hospital                                  |
| Simon Heinze        | Switzerland   | ТОМО      | 98.2        | Accuray-Tomotherapy  | Kantonsspital St.Gallen                                |
| Lian Soo Lum        | Malaysia      | TOMO      | 96.0        | Accuray-Tomotherapy  | Mount Miriam Cancer Hospital                           |
| Fazal Khan          | United States | IMPT      | 99.1        | RaySearch-RayStation | Mayo Clinic (Phoenix, AZ                               |
| Rolland Julien      | France        | VMAT      | 98.5        | Raysearch-RayStation | Institut Paoli-Calmettes – Centre Hospitalier des      |
| Shengpeng Jiang     | China         | VMAT      | 96.2        | Philips-Pinnacle     | Tianjin Medical University Cancer Institute & Hospital |
| Wa Wai Mok          | China-HK      | VMAT      | 94.7        | Philips-Pinnacle     | Tuen Mun Hospital                                      |
| Irina Fotina        | Germany       | IMRT      | 94.2        | Elekta-Monaco        | Self Employed                                          |
| Charbel Attieh      | Bahrain       | IMRT      | 93.3        | Elekta-Monaco        | King Hamad University Hospital                         |

Eclipse  $\ensuremath{\mathbb{R}}$  , Tomotherapy  $\ensuremath{\mathbb{R}}$  and RayStation  $\ensuremath{\mathbb{R}}$  are within +/- 1.0.



# Re : Naysayers / Critique

# Naysayers/Critique:

- 1. The competition is biased by vendors.
- 2. The competition is biased to high performer
- 3. Not accounting for treatment planning system differences.
- 4. Plan is not deliverable

# **Our Response:**

- 1. We do not receive any support from vendors.
- 2. That's true.
- 3. We have removed the bias of how TPS report dose by re-calculating the dose independently.
- 4. In the future, we are going to ask planners to submit QA delivery reports.























# **Planning Is Like Painting**

- 1. Choose Your Paint Beam Energy.
- 2. Choose Your Brush Beam Angles.
- 3. Blue Tape Optimization Structures

Edges = Low Dose Region. Skip Fancy Table Kicks Limit MU to 3-4X the daily dose

Review Two Best Plans :

- 1. Eclipse
- 2. Monaco

Best plan broken down in three steps:

- 1. Contours & Optimization Structures
- 2. Beam Angles & Energy
- 3. Optimization









# <section-header><section-header><section-header><section-header><section-header><complex-block><complex-block>



![](_page_22_Figure_2.jpeg)

| 3. Opt<br>1. Stage (<br>2. Stage 7<br>3. Stage 7<br>Pause op<br>For dose 1 | Dne - Aim<br>Two - Emp<br>Three - En<br><b>timizer, :</b><br>Level 70(I | ing for PTV Co<br>ohasis on confo<br>nphasis on OA<br><u>make tweaks</u><br>D95%>6650): | overage.<br>ormity and ho<br>R.<br><b>5 , and resu</b> | omogeneity of PTV<br><b>me.</b>           | RADIATIO |
|----------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------|----------|
|                                                                            | Volume                                                                  | Upper Objective                                                                         | Lower Objective                                        | Priority                                  |          |
|                                                                            |                                                                         |                                                                                         |                                                        |                                           |          |
| V_66.7                                                                     | 1%                                                                      | 7000                                                                                    |                                                        | 50                                        |          |
| V_66.7                                                                     | 1%<br>2%                                                                | 7000<br>6990                                                                            |                                                        | 50<br>50                                  |          |
| V_66.7                                                                     | 1%<br>2%<br>0.1%                                                        | 7000<br>6990<br>7300                                                                    |                                                        | 50<br>50<br>80                            |          |
| V_66.7                                                                     | 1%<br>2%<br>0.1%<br>99.5%                                               | 7000<br>6990<br>7300                                                                    | 6660                                                   | 50<br>50<br>80<br>100                     |          |
| V_66.7                                                                     | 1%<br>2%<br>0.1%<br>99.5%<br>98.5%                                      | 7000<br>6990<br>7300                                                                    | 6660<br>6670                                           | 50<br>50<br>80<br>100<br>100              |          |
| V_66.7                                                                     | 1%<br>2%<br>0.1%<br>99.5%<br>98.5%<br>97.5%                             | 7000<br>6990<br>7300                                                                    | 6660<br>6670<br>6680                                   | 50<br>50<br>80<br>100<br>100<br>100       |          |
| V_66.7<br>V_Paro_in66.<br>7                                                | 1%<br>2%<br>0.1%<br>99.5%<br>98.5%<br>97.5%<br>96.5%                    | 7000<br>6990<br>7300                                                                    | 6660<br>6670<br>6680<br>6690                           | 50<br>50<br>80<br>100<br>100<br>100<br>80 |          |

![](_page_23_Picture_2.jpeg)

![](_page_24_Figure_1.jpeg)

![](_page_24_Picture_2.jpeg)

|               | Given Targ        | gets     | RADIATION<br>KNOWI EDGE                                |
|---------------|-------------------|----------|--------------------------------------------------------|
| Dose<br>Level | Name              | Criteria | <b>Back bone</b> of the target coverage                |
| 70            | PTV70             | D95      | For 70, aims 66.5Gy<br>For 63, aims 59.8Gy             |
|               | PTV70-BR.PLX 4mm  | CI & HI  | For 56, aims 53.2Gy                                    |
| 63            | PTV63             | D98      | For PTV63 & PTV56,<br>No upper objective should be set |
|               | PTV 63-BR.PLX 1mm | CI       | Tto upper objective should be set                      |
|               | PTV 63-70 3mm     | HI       |                                                        |
| 56            | PTV 56            | D99 & CI |                                                        |
|               | PTV56-63 3mm      | HI       |                                                        |

| REAL PROPERTY AND A |            |                 | 201<br>& N -     |                 |                |             |              |           | iccept<br>inenge |
|---------------------|------------|-----------------|------------------|-----------------|----------------|-------------|--------------|-----------|------------------|
|                     | Chur       | ng Yin Mak - Ec | lipse - VMAT - C | linical (Trial) | - March 30, 20 | 17 (1:10 PM | l KSA Time)  |           |                  |
|                     | constrain  | constrain value | constrains type  | value low       | value high     | Max Score   | Result       | Raw Score | Performance      |
| PTV70               | D95        | 95              | lower            | 6400.00         | 6650.00        | 5.00        | 6655.96      | 5.00      | 100.0%           |
| PTV63               | D98        | 98              | lower            | 5670.00         | 5980.00        | 5.00        | 6013.81      | 5.00      | 100.0%           |
| PTV56               | CI         | 5320            | lower            | 0.65            | 0.87           | 3.00        | 0.84         | 2.61      | 86.9%            |
| PTV56               | D99        | 99              | lower            | 5100.00         | 5320.00        | 5.00        | 5327.15      | 5.00      | 100.0%           |
| OPTIC CHIASM        | max        | max             | upper            | 5200.00         | 5500.00        | 4.00        | 4533.00      | 4.00      | 100.0%           |
| OPTIC CHIASM PRV    | max        | max             | upper            | 5500.00         | 5800.00        | 3.00        | 5391.00      | 3.00      | 100.0%           |
| OPTIC N. BT         | max        | max             | upper            | 5000.00         | 5400.00        | 4.00        | 4927.00      | 4.00      | 100.0%           |
| OPTIC N. BT PRV     | max        | max             | upper            | 5500.00         | 5800.00        | 3.00        | 5446.00      | 3.00      | 100.0%           |
| OPTIC N. LT         | max        | max             | upper            | 5000.00         | 5400.00        | 4.00        | 4865.00      | 4.00      | 100.0%           |
| OPTIC N LT PRV      | max        | max             | upper            | 5600.00         | 5800.00        | 3.00        | 5461.00      | 3.00      | 100.0%           |
| EVERT               | max        | max             | upper            | 5300.00         | 5600.00        | 2.00        | 5248.00      | 2.00      | 100.0%           |
| EVELT               | max        | max             | upper            | 4800.00         | 5200.00        | 2.00        | 4709.00      | 2.00      | 100.0%           |
| LENS BT             | max        | max             | upper            | 1000.00         | 1200.00        | 3.00        | 966.00       | 3.00      | 100.0%           |
| LENSIT              | max        | max             | unper            | 1000.00         | 1200.00        | 3.00        | 965.00       | 3.00      | 100.0%           |
| BRAINSTEM           | max        | max             | upper            | 5000.00         | 5400.00        | 4.00        | 4545.00      | 4.00      | 100.0%           |
| BRAINSTEM PRV       | max        | max             | upper            | 5500.00         | 6000.00        | 2.00        | 5460.00      | 2.00      | 100.0%           |
| SPINAL CORD         | max        | max             | upper            | 4000.00         | 4200.00        | 3.00        | 3601.00      | 3.00      | 100.0%           |
| SPINAL CORD PRV     | max        | max             | upper            | 4000.00         | 4500.00        | 2.00        | 3945.00      | 2.00      | 100.0%           |
| PAROTIDIT           | D50        | 50              | upper            | 3000.00         | 4000.00        | 2.00        | 2941.20      | 2.00      | 100.0%           |
| LIPS                | Dec        | 0.1             | upper            | 3000.00         | 3500.00        | 3.00        | 2952.05      | 3.00      | 100.0%           |
| POST NECK           | Dec        | 01              | upper            | 3500.00         | 4000.00        | 3.00        | 3194.93      | 3.00      | 100.0%           |
| OBAL CAVITY         | mean value | mean            | upper            | 4000.00         | 4500.00        | 3.00        | 3821.75      | 3.00      | 100.0%           |
| LARYNX              | mean value | mean            | upper            | 4500.00         | 5000.00        | 3.00        | 4152.10      | 3.00      | 100.0%           |
| BRACHIAL PLEXUS     | Dcc        | 0.1             | unper            | 6300.00         | 6600.00        | 5.00        | 6228.12      | 5.00      | 100.0%           |
| ESOPHAGUS           | mean value | mean            | upper            | 4500.00         | 5000.00        | 3.00        | 2451.72      | 3.00      | 100.0%           |
| PTV70-BR.PLX 4MM    | CI         | 6650            | lower            | 0.65            | 0.90           | 4.00        | 0.91         | 4.00      | 100.0%           |
| PTV70-BB PLX 4MM    | HI         | 7000            | upper            | 0.08            | 0.13           | 2.00        | 0.08         | 2.00      | 100.0%           |
| PTV63-BR PLX 1MM    | CI         | 5980            | lower            | 0.65            | 0.88           | 3.00        | 0.88         | 2.98      | 99.5%            |
| PTV63-70 3MM        | H          | 6300            | upper            | 0.08            | 0.14           | 3.00        | 0.08         | 2.97      | 99.1%            |
| PTV56-63 3MM        | H          | 5600            | upper            | 0.08            | 0.14           | 3.00        | 0.08         | 2.98      | 99.5%            |
| BODY                | Dcc        | 0.1             | upper            | 7500.00         | 7700.00        | 3.00        | 7085,49      | 3.00      | 100.0%           |
| 5001                |            |                 | TEET             |                 | Max Score:     | 100.00      | Total Score: | 00.55     | 99.5%            |

![](_page_26_Picture_1.jpeg)

Plan Details:

Name: Irina Fotina Country: Germany Hospital: Self-Employed Technique: IMRT Rank: Top (Monaco) Job Title: Medical Physicist Clinical 93.6/100 Name: Charbel Attieh Country: Bahrain Hospital: King Hamad University Hospital Technique: IMRT Rank: Second Top (Monaco Job Title: Medical Physicist

### Plan Details:

Energy: 6 & 10MV, 9 Beams, Linac: Versa HD

![](_page_26_Picture_7.jpeg)

![](_page_26_Picture_8.jpeg)

### 9 Field IMRT Plan With Monaco and Monte Carlo Align iso-center with the PTV. (Common Sense) 5 Anterior beams of (6MV) and 4 Posterior beams (10 MV) Utilize appropriate margins for the target, beamlet and avoidance structures. Irina FOTINA, PhD Improvement of Conformity Index is possible with increased beams, but it \_ has limited effect on homogeneity. IMRT Prescription Parar Calculation Properties × \*\*\*\* Minimum CT Number: Use with Clear option -850 Grid Settings Beam Description SSD (cm) Gantry (deg) Collimator (deg) Couch (deg) 1 G0 92.41 0.0 0.0 0.0 0.50 Grid Spacing (cm): Auto Flash Margin (cm): 2 G40 95.04 40.0 0.0 0.0 Calculate Dose Deposition to: Surface Margin (cm): 0.25 Medium 3 G80 95.25 80.0 0.0 0.0 Force entire volume to be treated as water: 4 G128 92.40 128.0 0.0 0.0 0.25 Beamlet Width (cm): 5 G165 0.0 0.0 92.41 165.0 Grid Settings changes will be applied to ALL Rx IDs. Target Margin: Narrow (3-4mm) · 6 G125 200.0 0.0 0.0 92.30 7 G238 91.85 238.0 0.0 0.0 Avoidance Margin: Normal (8mm) -Algorithm Settings 8 G280 93.72 280.0 0.0 0.0 Bias Contribution Monte Carlo Photon Photon Algorithm: 9 G320 94.50 320.0 0.0 0.0 Statistical Uncertainty (%): 1.00 Per Control Point Per Calculation OK Cancel 54

![](_page_27_Picture_1.jpeg)

# Optimization

Target EUD Cost function:

Example : PTV70 Target EUD = 70 Gy, Cell Sensitivity = 0.75 Underdose DVH = 66.5 Gy to 95% Quadratic Overdose = 72 Gy RMS = 0.25 Gy

- Pareto mode allows you to increase target priority for regions of Target-OAR conflict ( brachial plexus in the PTV)
- OAR Sparing Reduce power law exponent (PLE) in serial function
- Choose DVH resolution of 0.25 cm

![](_page_28_Figure_1.jpeg)

# Special Thanks To

Ahmad Mahmoud Nobah, M.Sc., DABR ( Competition Founder) Medical Physicist – Radiation Physics Section King Faisal Specialist Hospital & Research Centre

Victor Gabriel Leanardo Alves, D.Sc. Medical Physicist - RT Physicist, INCA, Brazil

### Saad Aldelaijan. M.Sc.,

Medical Physicist – Radiation Physics Section King Faisal Specialist Hospital & Research Centre

58

| Join Us                                              | RADIATION<br>KNOWLEDGE                                                                                                                                                                                                                                               |
|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Radiation<br>Knowledge<br>www.radiationknowledge.org | June 2017       May 2018         Results – ICARO2       Results         Aug 2017       July 2017         Webinars Per TPS       July 2017         Vebinars Per TPS       2018         2018 Competition (3 in 1)       \$sept 2018         March 2018       BT Global |
| THANK YOU                                            | Physics Task                                                                                                                                                                                                                                                         |

![](_page_29_Picture_2.jpeg)